4.3 Special Divisibility Tests

Note Title 2/18/2005

1. (a). For any integer a, The units digit of a is 0,1,4,5,6, or 9

If: Let $a = a_{1}/0^{2} + ... + a_{1}/0 + a_{0}$, $0 \le a_{0} < 10$ $\therefore a = a_{0} = 10 (a_{1}/0^{4} + ... + a_{1})$ $\therefore a = a_{0} (mod 10) \therefore a^{2} = a_{0} (mod 10)$ Note that all the other a_{1} of a_{0} are associated with a factor of 10 = 10 in a_{1}^{2} , and so don't contribute to units digit. $\therefore a_{1} = a_{1} + a_{1} + a_{2} = a_{1} + a_{2} = a_{1} = a_{1}$ $a_{0}^{2} = a_{1} + a_{2} = a_{2} = a_{2} = a_{2} = a_{3} = a_{3} = a_{4} = a_{2} = a_{3} = a_{4} = a$

(b). Any integer ao, o≤ao≤9, can occur in units digit of a³

Pf: $as_{1}(a)$, Let $a = a_{1}(0^{n} + ... + a_{0})$, $0 \le q_{0} < 16$ $a = q_{0} = 10$ ($a_{1}(0^{n-1} + ... + a_{1})$) $a = a_{0}$ ($a_{1}(0^{n-1} + ... + a_{1})$) $a = a_{0}$ ($a_{1}(0^{n-1} + ... + a_{1})$) $a = a_{0}$ ($a_{1}(0^{n-1} + ... + a_{1})$) $a = a_{0}$ ($a_{1}(0^{n-1} + ... + a_{1})$) $a = a_{0}$ ($a_{1}(0^{n-1} + ... + a_{1})$) $a = a_{0}$ ($a_{1}(0^{n-1} + ... + a_{1})$)

 $-\frac{7}{9}$ = 0,1,2,3,4,5,6,7,8, or 9 (mod 10)

(C) For any a, The units digit of a" is 0,1,5,006.

Pf. Asin(a), The only contributor to units digit in a4 is 904. 1. Look at all possibilities of 204, 0=90=9.

From (a), $a_0^2 \equiv 0, 1, 4, 5, 6, 9 \pmod{10}$

 $\frac{1}{2} G_0^4 = 0, 1, 16, 25, 36, 81 \pmod{10}$ $\frac{1}{2} G_0^4 = 0, 1, 5, or 6 \pmod{10}$

(d). The units digit of a triangular number is 0,1,3,5,6, or 8.

Pf: A number a is triangular \rightleftharpoons There is a number $n, n \ge 1$, s.t. a = n (n+1) (Problems 1.3, 16).

Let $N = \frac{q_m}{10^m} + \cdots + \frac{q_o}{10^n} = \frac{1}{20^n} (\frac{mod}{10^n})$ $\therefore N + 1 = \frac{q_o}{10^n} + 1 (\frac{mod}{10^n}) = \frac{1}{20^n} = \frac{q_o}{10^n} (\frac{mod}{10^n}) = \frac{1}{20^n} = \frac$

 $\frac{1}{2} = \frac{a_0(a_0+1)}{2} \pmod{10}$

Consider all possibilities for Go

a_{o}	Go (Go + 1)		
	2	mod 10	+5 (mudio)
0	0	6	5
1	(1	6
2	3	3	8
3	6	6	1
4	10	0	5
5	15	5	0
G	21	1	6
7	28	8	3
8	3 C	6_	1
9	45	5	Ó
Note Than	f for the o	Ther ai,	if associated
with a fa	ctor of 10,	Then a	if associated 10'= 0 or 5 (modie)
	, , ,	1	2
Vaus, The	column I+	5 (mod10)]	shows possibilities
of other	factors co	ntri buting	to units digit
if divid	ed by 2.	· · · · · · · · · · · · · · · · · · ·	to units digit
$A \equiv 0$	1,3,5,6,00	8 (mud/	o) if a is triangular
			,
Fal D. / +	1 dist	I 99	

2. Find The last two digits of 999

 $9^{3}-9=9(9^{2}-1)=9(80)$ -. $9^{3}=9(mod 10)$ -: $9^{9}=9^{3}=9(mod 10)$

4. (a) Prove: If A is represented in The base 6 by N= amb + ... + a, b + ao, 0 = ax = 6-1 Then (6-1) | N => (6-1) | (am + am-1 + ... + q, + q.) Pf: Consider $P(x) = \sum_{k=0}^{m} a_k x^k$, a polynomial with integer coefficients. Note That $6 \equiv 1 \pmod{6-1}$ $f(6) \equiv P(1) \pmod{6-1}$ by f(6) = 1, and P(1) = am + ... + q, + qo .- N = Cm + ... + 9, + 90 (mod 6-1) i N = 0 (mod 6-1) => am+...+ ao = 0 (mod 6-1) · - (b-1) [N = (b-1) | (am + ... + qo) Mute: (6-1) divides N (base 10) €> sum of digits (base 10) is divisible by (6-1). (b) For Mwritten in base 9 (1) N is divesible by 8 = 7 Sum of digits of M (in base 10) is divisible by 8 (in base 10). This follows from (a).

- (2) M is divisible by 3 = units digit is divisible by 3 since each term in The polynomial (other Than units digit) contain a power of 9.
- (c) (447836)_q = is divisible by 3 since 3 (6 4+4+7+8+3+6=32 (beselv), 50 is also divisible by 8.
- 5. Find The missing digits
 - (a) $5(840 27358) = (4)8243 \times 040$

5+1+8+4+0=18,509 51840, $7(14)8243\times040,501+4+1+8+2+4+3+x+4=x+27$ $3(14)8243\times040,501+4+1+8+2+4+3+x+4=x+27$

Since 1-8+5-3+7-2=0, Then 11/27358/1 1-8+5-3+7-2=0, Then 11/27358/1 1-8+5-3+7-2=0, Then 11/27358/11-1/2-1 1-1/2-1

... x = 9

(6), $2 \times 99561 = [3(523 + x)]^2$

```
Since 32 is on right side, 9/2×9956/
=: 2+x+9+9+5+6+1 = x+32, ... x = 4
6 2784x = x - 5569
    5+5+6+9 = 25. From prot of Th. 4.5,
5569 = 25 (mod 9), and 25 = (2+5) mod 9
    -. 5569 = 7 (mod 9).
   5.5569x = 7x (mud ?)
    2784x = (2+7+8+4+x) = (3+x) \mod 9
   .: 7x = (3+x) (mod 9), or 6x = 3 (mod 9)
   .: 9 ((6x-3), so x = Z, 5, 8
   5569 \equiv (9-6+5-5) \equiv 3 \pmod{11}, 5569x \equiv 3x \pmod{11}
   2784x \equiv (x-4+8-7+2) = (x-1) \pmod{1}
  -- 3x = (x-1) (mod 11), 2x = -1=10 (mod 11)
  ~ x = 5
(d) 512 · 1x53125 = 1,000,000,000
    512 = (5+1+2) = 8 (mod ?)
    1x53125 = (1+x+5+3+1+2+5) = (8+x) (mod 9)
   -- 8.(8+x) = 1,000,000,000 = 1(mod 9)
   < - 64 +x = 6+4+x = (1+x) = 1 (mod 9)
```

-- x = 6 or x = 9

$$512 = (2-1+5) = 6 \pmod{11}$$

 $(x5)(25 = (5-2+1-3+5-x+1) = (7-x) \pmod{11}$
 $\therefore (5\cdot(7-x)) = (0-0+0-0+0-0+0-0+0-1) = -1 \pmod{11}$
 $\therefore 42-6x = -1 \pmod{11}, 43 = 6x \pmod{11}$
 $\therefore x = 0, \text{ and } from x = 9, 43 = 54 \pmod{11}$

-- x=9

- G. (a). An integer is divisible by 2= its units digit is 0,2,4,6, or 8.
 - Pf: Since 10=5-2, in The base 10 representation of an integer N= am 10 + --- + a,10 + ao, each term, except ao, contains a power of 10, and so is divisible by 2.

 --- N is divisible by 2 => 90 is divisible by 2, so a = 0,2,4,6,00 8.
 - (b) An integer is divisible by 3 = The sum of its digits is divisible by 3.
 - Pf: Let $N = a_m 10^m + ... + q_1/0 + q_0$ be the decimal expansion of N_1 $0 \le q_k = 10$, and let $S = a_m + ... + q_1 + q_0$ Consider $P(x) = \sum_{k=0}^{\infty} a_k x^k$. Mote $P(10) = N_1$, $P(1) = S_1$

Note also
$$10=1 \pmod{3}$$
, so $P(10)=P(1) \pmod{3}$
 $\therefore N = S \pmod{3}$.
 $\therefore N = O \pmod{3} \iff S = O \pmod{3}$

(c) An integer is divisible by 4=> The number formed by its tens and units digits is divisible by 4.

Pf: Let M = am 10m + ... + a2102 + a,10 + a0, 0 = ax < 10.

Let
$$K \ge 2$$
. Then $10^{k-2} - 10^{k-2} = 10^{k-2} (5.2)^2$
= $10^{k-2} \cdot 25 \cdot 4$
: Each term $C_K = a_K 10^k$ is divisible by 4 if $k \ge 2$.

- I. N is divisible by 4 => 9,10+90 is divisible by 4.
- (d) An intiger is divisible by 5 = its units digit is 0 or 5

- Each Cx is divisble by 5, if K≥1.

in N is divisible by 5 = 90 is divisible by 5, and 90 is divible by 5 = 90,5.

7. For any integer a, show that a2-a+7 ends in one of The digits 3,7, or 9.

Pf: If a = 9m 10 m + ... + 9, 10 + 90, Then a = 90 (mod 10)

... a = 90 (mod 10). ... a - 9 + 7 = 90 - 90 + 7 (mod 10).

... 90 90 - 90 + 7 90 + 7 - 10K

-10	-0 0			
0	7	7	K= 0	
1	7	7	K = 0	
2	9	r	K= 0	
3	13	3	K= 1	
4	17	٩	K=1	
5	27	7	K= 2	
6	37	7	K=3	
7	49	9	K=4	
8	63	3	K=5	
9	79	9	K=7	
			•	

Since $q_0^2 - q_0 + 7 \equiv q_0^2 - q_0 + 7 - 10k \pmod{10}$, $q_1 = q_0^2 - q_0 + 7 - 10k \pmod{10}$

8. Find The remainder when 4444 is divided by 9. Mote That 4444 (mod 9) = (4+4+4+4) = 16 (mod 9) 16 = 23-2, 50 4444 (mod 9) = 23-2 (mod 9) Since 23 = (-1) (mod 9), Then 4444 = (-1)-2 (mod 9) -- 4444 = (-1) +444 4444 = 4444 (mod 9) But 4444 = 3.1381 +1, 50 $2^{4444} = (2^3)^{1381} \cdot 2 \cdot 2 = (-1) \cdot 2 \pmod{9}$ 4444 = 2 = (1)·2 = 7 (mod 9) -- remainder is 7 9. Prove that no integer whose digits add up to 15 can be a square or cube. Pt: Let M be any integer whose digits add up to 15. .. N = (5 (mod 9) (see pt. to Th. 45). But 15 = 6 (mod 9). ... N = 6 (mod 9) Consider a = 9m 9 + ... + 9 + 90

-.
$$a = q_0 \pmod{9}$$
 and -. $a^2 = a_0^2 \pmod{9}$
and $a^3 = q_0^3 \pmod{9}$.
Consider all possibilities of a_0 ;

for	(mod?)		\		•
a	α_{o}^{2}	40 (mud	(9) (3)	a 3 (u	10d9)
O	0	0	Ő	0	•
1	1	/	1	1	
Z	4	4	8	8	
3	9	0	27	0	
4	16	7	64	/	
5	25	7	125	.8	
6	36	0	216	0	
7	49	4	343	1	
8	64	/	512	8	

```
Since 400 = 160000, Then 400 = 0 (mod 100)
for \ n \ge 2.
7^{4n} = (1 + 6.400)^n = \sum_{k=0}^{n} {n \choose k} 1^{n-k} (6.400)^k
  So for K=2, (") (6.400) = 0 (mod 1000)
 - 74n = 1+ (1) 6.400 (mod 1000)
Now 999 = 4.249 + 3
... 7 = (+ (249) (6-400) = 1+249.6.400 (mod 1000)
  249.6.400 = (49+200)(400)(6)=(6)(49)(400)+6.400.200
 -- 249-6400 = 6-49.400 (mud 1000)
 .- 74.249 = 1 + 6.49.400 (mud 1000)
           = 1+6.9.400 (mod 1000)
  6-9-4=216, :. 1+6.9.400 = 21601
-: 7 = 601 (mod 1000)
: 799 = 601.23 (mod 1000)
7^3 = 343 (601)(343) = 206143

127999 = 206143 = 143 (mod 1000).
 -- 143 are Phz last 3 digits.
```

12. If
$$t_n$$
 is the nth triangular number, show that
$$t_{n+2k} \equiv t_n \pmod{k} \cdot \dots \cdot t_n, t_{n+20} \text{ have same}$$

$$last digit.$$

Pf: $t_{n+2k} = \frac{(n+2k)(n+2k+1)}{2}$

$$= \frac{n^2 + 2kn + n + 2kn + 4k^2 + 2k}{2}$$

$$= \frac{n^2 + n + 4kn + 4k^2 + 2k}{2}$$

$$\therefore t_{n+2k} - t_n = \frac{n^2 + n + 4kn + 4k^2 + 2k}{2}$$

$$= \frac{4kn + 4k^2 + 2k}{2}$$

$$= k \left(2n + 2k + 1\right)$$

$$\therefore t_{n+20} \equiv t_n \pmod{k}$$

$$\therefore t_{n+20} \equiv t_n \pmod{k}$$

$$\therefore t_{n+20} \equiv t_n \pmod{k}, \text{ some } k$$

$$\therefore if t_n \equiv \left(a_m a_{m-1} \dots a_2 a_1 a_0\right)_{10}, \text{ then}$$

	adding 10k not affect as so
	adding 10k not affect ao, so tn+20 and tn have some units digit.
	n+20
13.	For any n 21, prove There exists a prime with at least n of its digits equal to 0.
	least not its digits equal to 0.
	Pt: This follows from Dirichlet's Theorem (p.56).
	From problem # 12 of section 2-2,
	acd(a,a+1)=(consider 9,10) and
	arithmetic progressions with powers of 10.
	It: This follows from Dirichlet's Theorem (p.56). From problem # 12 of section 2-2, ged (a, a+1) = 1. : consider 9, 10 and arithmetic progressions with powers of 10. i 9+10K, K=1,2,3, contains infinitely many animis
	many primes.
	10n+11 +9 has n Zerozs, and There only
	many primes. 10n+11 + 9 has n Zerozs, and There only a finite number 1:55 Than 10n+1 + 9.
	By Dirichlet's Theorem, There must be a prime in The series K.10"+1+9, and each has n zeroes.
	a prime, in the series K.10 +7, and
	each has n zerois.
	,
14	Find the values of n= 1 for which 1: + 2: ++ n!
	is a perfect square.
	, , , , , , , , , , , , , , , , , , ,
	$1! = 1$ $3! = 6$ Note that for $n \ge 5$, $\ge n!$ $2! = 2$ $4! = 24$ ends in 0 .
	1!+2! = 3

1! +2! +3! = 9 = 3 1! +2! +3! +4! = 33

The units digits of $\sum_{k=1}^{n} n!$ will be 3

for $n \ge 4$ By problem 1(a), a perfect square can't end

in 3. -. There is no perfect square for $n \ge 4$ in = 1, 3 are The only values. 15. Show That 2" divides an integer N=2" divides The number made up of the last n digits of N. Pf: Let N= an+, 10 n+3 + ... + 9,10 + an-10 n-1 + ... + a,10 + a be The decimal representation for N, n ≥ 1, j ≥ 0. (a) If 2" divides The last n digits of M, Then $2^{n} \left((a_{n-1}/0^{n-1} + ... + a_{1}/0 + a_{0}) \right)$ [1] But ant; 10 + ... + an 10 = 10 (ant; 10 + ... + an) = 2 5 (an+; 10 + ...+ an)

```
Pf: Since |00| = |000 + 1 = |000 - 1|.

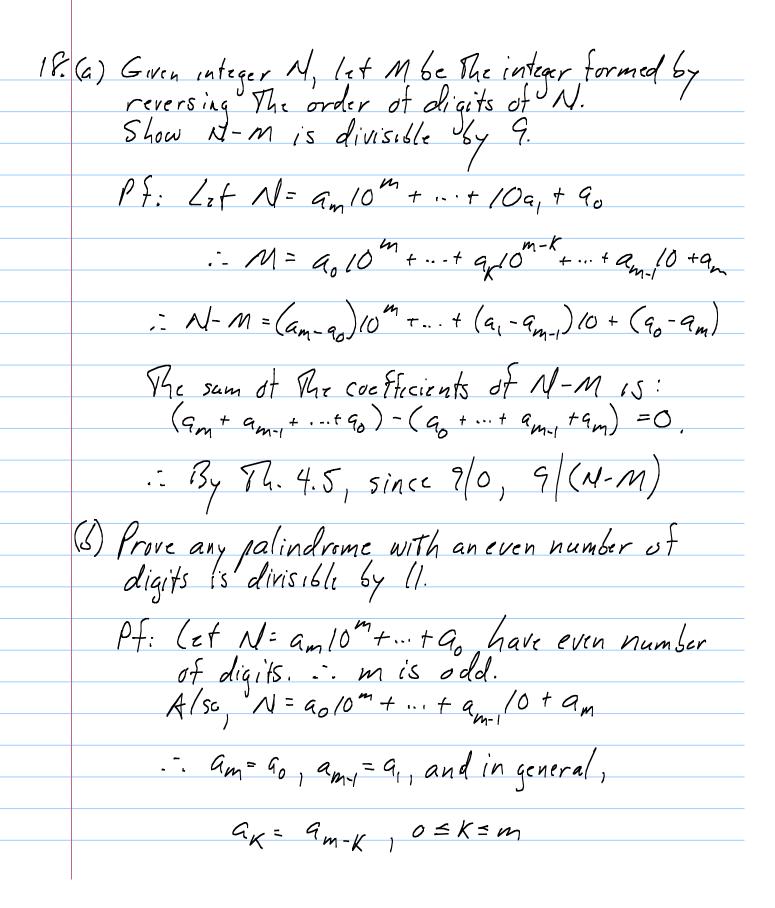
|00| = -1 \pmod{1001}

Also, |06| = |(03 - 1)(10^3 + 1) = 999(1001)
         106 = 1 (mod 1001)
    Also 1001 = 7.11.13
     Consider 10sh
        If n is odd, n=2k+1 for some K
\frac{1}{10^{8}} = 10^{3(2k+1)} = 10^{6k+3} = 10^{6k}.10^{3}
           But 106 = 1 (mod 1001), 50
106 = 1 = 1 (mod 1001)
             -. 106k/03 = 1(-1) =-1 (mod 1001)
            -: hodd => 103n = (1) (mod 1001) [1]
        If n is even, Then n= 2k, some k.
           : 1031 = 10GK = /K=1 (mud 1001)
           : neven => 1034 = 1 (mod 1001) [2]
     Mote N= (90+ 10a, + 100a2) - (-a3 10 - 94104-95105)+...
            = 10^{0} (a_{0} + a_{1}10 + a_{2}100) - 10^{3} (-a_{3} - a_{4}10 - a_{5}100) + \dots
  From [2], j even: a3: 10 = a3; (mod 1001)
                       azi+1035+1= azi+10 (mod 1001) [4]
```

$$a_{3j+2} = a_{3j+2} 100 \pmod{1001} \text{ [5]}$$
From [1], K odd: $a_{3k} 10 = -a_{3k} \pmod{1001} \text{ [6]}$

$$a_{3k+1} 10^{3k+1} = -a_{3k+1} 10 \pmod{1001} \text{ [7]}$$

$$a_{3k+2} 10^{3k+2} = -a_{3k+2} 100 \pmod{1001} \text{ [8]}$$
Adding [3] + [4] + [5], $j \in Ven$:
$$a_{3j} 10^{3j} + a_{3j+1} 10^{3j+1} + a_{3j+2} 10^{3j+2} = a_{5j} + a_{3j+1} 10 + a_{5j+2} 100 \pmod{1001} \text{ [9]}$$
Adding [6] + [7] + [8], $K \text{ odd}$:
$$a_{3k} 10^{3k} + a_{3k+1} 10^{3k+1} + a_{3k+2} 10^{3k+2} - a_{3k} 10^{3k+1} - a_{3k+2} 100 \pmod{1001} \text{ [70]}$$
Adding [6] + [7] + [8], $K \text{ odd}$:
$$a_{3k} 10^{3k} + a_{3j+1} 10^{3k+1} + a_{3k+2} 10^{3k+2} - a_{3k} 10^{3k+1} - a_{3k+2} 100 \pmod{1001} \text{ [70]}$$
Alow $10^{3k+1} + a_{3k+2} 10^{3k+2} - a_{3k+2} 10^{3k+2} - a_{3k+2} 10^{3k+2} + a_{3k+2} 10^{3k+2} 10^{3k+2} + a_{3k+2} 10^{3k+2} 10$



Since mis odd, There is no coefficient That is ungrouped.

Rearranging terms of T, by reversing the order of The negative coefficients,

19. Given repunit Rn, prove:

Pf: Note for R_n , sum of digits, S, is nsince $R_n = 11...1$ (n digits of 1). \vdots since $R_n \equiv S \pmod{9}$ by Th. $4.\overline{S}$, \vdots $R_n \equiv n \pmod{9}$.

$$\therefore k_n \equiv 0 \pmod{9} \iff n \equiv 0 \pmod{9}$$

(6)
$$11 \mid R_n \rightleftharpoons n$$
 is even

Pf: Let $R_n = 1 \cdot 10^m + ... + 1 \cdot 10 + 1$

Look at $T = (a_0 - a_1) + (a_2 - a_3) + ... + (-1)^m a_m$
 $= (1-1) + (1-1) + ... + (-1)^m a_m$

Twill be $0 \rightleftharpoons 7$ can group terms, which means m is odd

 $\therefore T = 0 \rightleftharpoons 7$ number terms is even.

By Th. 4.6, $11 \mid R_n \rightleftharpoons 7 = 0$
 $\therefore 11 \mid R_n \rightleftharpoons n$ is even.

20. Factor $R_g = 11 \cdot 111 +$

$$= 10^{9} + 1.10^{9} + ... + 1.10 + 1 \qquad [1]$$

The latter basically proves The assertion. However, to go further, multiply [1] by 9 and add 1.

(10"+1-10"-1+ ... + (-10+1)-9 +1

$$= (10^{n} + 10^{n-1} + ... + 10 + 1)(10-1) + 1$$

$$= (0^{n+1} + 10^n + \dots + 10^2 + 10$$

$$= 10^{n+1} - 1$$

$$\frac{1}{2} \left(10^{n-1} + 2 \cdot 10^{n-2} + \dots + n \right) \cdot 9 + (n+1) = \frac{10^{n+1} - 1}{9}$$

22. An invoice shows that 72 canned hams were purchased for \$x67.9y. Find The missing digits.

Solution: $72 \cdot N = \times 679 \text{y}$, where $N = \cos t$ in cents of one ham.

Note $72 = 8 \cdot 9 = 2^3 \cdot 9$. $\therefore 2^3 \mid \times 679 \text{y}$ By problem 15, $2^3 \mid 79 \text{y}$... y = 2 $1 \cdot \sin c = 79 \text{y} \div 8 = 90 + 7 \text{y}$, and $\therefore 8 \mid 7 \text{y}$ $\therefore \times 679 \text{y} = \times 6792$ Since $9 \mid 72$, $9 \mid \times 6792$, $\therefore 9 \mid \times + 6 + 7 + 9 + 2$ $\therefore \times -2$ $-1. \times 679y = 36792 (x=3, y=2)$ 23. If 792 divides 13xy45z, find x,y,z Salutim: Since 792 = 8-89, 8 /722, 50 8 / 13 x y 452, and by problem (5, 8/452 452 = 8.50 + 52, -8 52, 2 = C Since 9/13×y456, 9/1+3+×+y+4+5+6, -- 9/1+×+y, -: ×+y+1=9,18, ×+y=8,17 A(50, 6/792, 80, by problem 16(6), 6/6+4.5+4.4+4y+4x+4.3+4.1, or 6/4y+4x+58, or 6/4x+4y+4 --6/4(1+x+y), 50 3/(1+x+y) This dozsn't help since 9/(1+x+y).

... Goal is to show constructed

M=0 (mod 13), and so N=0 (mod 13). To analyze M, lock at decimal expansion coefficients of N = 102p - 10p + 1. First consider 10°. Since p is prime, p is odd, so There will be an lodd number of zeroes in 10°. Example: 105 = 1.105 + 0.104 + ... + 0.10 + 0
= a5.105 + a4.104 + ... + q.10 + a Look at M: 100 x a_{K+1}

From Div. Alg., p=3q+r, and as p is prime, r=0. -. Can restrict considerations to p=3q+1or p=3q+2, as above, and p>3. For p=3q+1, q must be even for p to p=3q+1. be odd. Let q=2k. p=6k+1 (k=1,2,...) For p=3q+2, q must be odd. Let q=2k: 1. p=6k+5 (k=0,1,...) $p = 6K + 1 \quad (K=1, 2, ...), \text{ or } p = 6K' + 5 \quad (K'=0, 1, 2, ...)$ $\frac{1}{10^{p}} = 10^{6k} \cdot 10^{6k} \cdot (K = 1, 2, ...), or$ $10^{p} = 10^{6k} \cdot 10^{5} \cdot (K = 0, 1, 2, ...)$ From above, since M = -100 for 10^{8} , and since $N = M \pmod{13}$, letting $N = 10^{8}$, then $10^{8} = -100 \pmod{13}$. Similarly $10 = 10 \pmod{13}$ Since 106 = 1 (mod 13), 106k= 1=1 (mod 13)

:. N=102p-10p+1 = [21]-[1]+1 be comes

$$10^{2p}-10^{6}+1 = 100-10+1 = 91 \pmod{13} \quad (K=1,2,3,...)$$

$$10^{2p}-10^{6}+1 = -10-(-100)+1 = 91 \pmod{18} \quad (K'=0,1,2,...)$$

$$10^{2p}-10^{6}+1 = -10-(-100)+1 = 91 \pmod{18} \quad (K'=0,1,2,...)$$

$$10^{2p}-10^{6}+1 = 0 \pmod{18}$$

$$10^{2p}-10^{6}+1 = 0 \pmod{13}, so$$

$$10^{2p}-10^{6}+1 = 0 \pmod{13}, so$$