8.3 Composite Numbers Having Primitive Roots

Note Title 3/10/2006

1. (a) Find The four primitive roots of 26 and the eight primitive roots of 25

Proof of Corollary to Th. 8.9 shows That if r is an odd primitive root of pk, Then it is a primitive root of 2pk.

Since $2G = 2 \cdot 13$, find odd primitive roots of 13. There are $\phi(13-1) = \phi(12)$ incongruent primitive roots of 13. $\phi(12) = (2-2)(3-1) = 4$

Check 2¹²: By Fuler's Ph., 2⁸⁽¹³⁾=2¹²=1 (mod 13) Order of 2 mod 13 must divide 12 (Th. 8,1), and 2', 2², 2³, 2⁴, 2⁵, 2⁶ ≠ 1 (mod 13). -: 2 is a primitive root of 13.

By Th. 8.3, other integers having order 12 mod 13 are powers of 2 k s.t. gcd (K,12)=1 -: K=1,5,7,11.

-: 2'=2, 2'=6, 2'=11, 2"=7 (mod 13). So, four incongruent prim roots of 13 are 2, 6, 7, 14. -. Four odd primitive roots of 13 are (2+13), (6+13), 7, 11, or 7, 11, 15, 19

-. 7,11,15,19 will be prim. roots for 2.13=26

For 25, 25=52. Proof of Lemma 2 and Th. 8.9 Show if vis a primitive root of p s.t. rp-1 \$1 (mod p2), Then vis a prim. root of pk.

2⁵⁻¹=16 ≠ 1 (mod 5²) => 2 a frim. root of 25 since 2 is a prim. root of 5.

 $4(25) = 5^{2}5 = 20$ --- Look at 2^{k} s.t. gcd(k, 20) = 1. --- k = 1, 3, 7, 9, 11, 13, 17, 19 and $2^{k} = 1 \pmod{25}$

 $2^{3}=8$, $2^{7}=128=3$, $2^{9}=2^{7}-2^{2}=12$, $2''=2^{9}\cdot 2^{2}=12$, $2''=2^{9}\cdot 2^{2}=12\cdot 4=48=23$ $2^{13}=2''\cdot 2^{2}=23\cdot 4=92=17$ $2^{17}=2^{9}\cdot 2^{7}\cdot 2=12\cdot 3\cdot 2=72=22$ $2^{19}=2^{17}\cdot 2^{2}=22\cdot 4=88=13$

-. Primitive roots of 25: 2,3,8,12,13,17,22,23

(6). Determine all The primetive roots of 3,3, and 34. Mote 3th has primitive roots by Ph. 8.10 Z is a primitive root of 3 -- either 2 or 2+3 will be primitive roots of 3K, K=2. Since, if r is a prime root of p, Then order of r (mod p²) is (p-1) or p(p-1) 5. Order of $2 \pmod{3^2}$ is (3-1) or $f(3^2)$ But $2^2 = 4 \neq 1 \pmod{3^2}$, so $2^{\log 3^2} = 1 \pmod{3^2}$, so 2 is a primitive root of 32, 3, and 34 32: There are $\phi(\phi(3^2)) = \phi(6) = 2$ prim. roots Since $\phi(3^2) = 6$, By 8h. 8.3, 2^h will have order $6 \iff \gcd(h, 6) = 1$, or h = 1, 5 $\therefore 2^5 = 32 = 5 \pmod{3^2}$ - primitur roots are 2,5 $3^{3}: \phi(3^{3}) = 3^{3} - 3^{2} = 18, \ \phi(18) = 6$ -- 6 prim. roots, and all are of form 2^{k} , s.t. qcd(K, 18) = 1, or K = 1, 5, 7, 11, 13, 17 $2^{5} = 32 = 5 \pmod{27}$

$$2^{7} = 5 \cdot 2^{2} = 20 \pmod{27}$$

$$2^{11} = 5 \cdot 5 \cdot 2 = 50 = 23 \pmod{27}$$

$$2^{13} = 23 \cdot 2^{2} = 72 = 11 \pmod{27}$$

$$2^{17} = 2^{11} \cdot 2^{5} \cdot 2 = 23 \cdot 5 \cdot 2 = 230 = -40 = 14 \pmod{27}$$

-- prim routs are 2,5,11,14,20,23

41, 43, 47, 53

$$2^{1} = 2 \quad 2^{5} = 32 \quad 2^{7} = (28 = 47)$$

$$2^{1} = 47 \cdot 2^{4} = 23 \quad 2^{13} = 23 \cdot 2^{2} = 1$$

$$2^{17} = 11 \cdot 2^{4} = 14 \quad 2^{19} = 14 \cdot 2^{2} = 52$$

$$2^{23} = 56 \cdot 2^{4} = 5 \quad 2^{21} = 5 \cdot 2^{2} \cdot 2 = 320 = 77$$

$$2^{31} = 77 \cdot 2^{2} = 65 \quad 2^{37} = 65 \cdot 2^{5} \cdot 2 = 29$$

$$2^{41} = 29 \cdot 2^{4} = 59 \quad 2^{43} = 59 \cdot 2^{2} = 74$$

$$2^{47} = 74 \cdot 2^{4} = 50 \quad 2^{53} = 50 \cdot 2^{1} = 41$$

$$2^{5^{2}} = 2^{25} = 5 \cdot 2^{2} = 20 \quad 2^{7^{2}} = 2^{4} = 50 \cdot 4 = 38$$

$$2^{5 \cdot 7} = 2^{35} = 65 \cdot 2^{4} = 68$$

· - 2, 5, 11, 14, 20, 23, 29, 32, 38, 41, 47,50, 56, 59, 65,68,74,77 arc Arim. roots

2. For an odd prime p, establish:

[incongruent]

(a) There are as many primitive roots of 2pn as Pf: By Th. 8.9 and its corollary, p and 2ph have prim. roots, where p is an odd prime and n = 1. By corollary to Th. 8.4 (p.161), There are exactly $\phi(\phi(2p^n))$ prim. roots for $2p^n$, and exactly $\phi(\phi(p^n))$ prim. roots for p^n . (i.e., incongruent prim. roots). For m, n = 1, g(d(m, n) = 1), $\phi(mn) = \phi(m)\phi(n)$, and $g(d(2, p^{n}) = 1)$ since p = 1 sodd. $-1 - \phi(2p^n) = \phi(2)\phi(p^n) = \phi(p^n)$ as $\phi(2) = 1$ $-\frac{1}{2} - \phi(2p^n) = \phi(p^n) = \phi(\phi(2p^n)) = \phi(\phi(p^n))$ Note also that proof of corollary to Ph. 8.9 shows if r is an odd prim. root of pk, it is also a prim. root of 2 pk. Similarly, if r is a primitive root of 2pk,

Then $gcd(r, 2p^k) = l$, r is odd. If n is order of r (mod p^k), Then $n = \emptyset(p^k)$ Also, $r^n = l$ (mod p^k) => $r^n - l = xp^k$, some x. But $r^n - l$ is even, so x = 2y, some y, $50 r^n = l \pmod{2p^k}$. $\therefore n \ge \emptyset(2p^k) = \emptyset(p^k)$ $n \ge \beta(p^K)$ and $n \le \beta(p^K) \Rightarrow n = \beta(p^K)$... r is a primetive root of p^K . So, if r is an even prim. rudt of pk, Then
choose r' to be r+pk so r' is odd and
i. a prim. ruot of 2pk. (6) Any primitive root r of pris a primitive root Pf: gcd(r,p)=1=7 gcd(r,p)=1. Let K be order of r (mod p) .. r = 1 (modp) $\therefore K | \varphi(p) \Rightarrow K | (p-1)$ Also, r = 1+ sp, some s.

So, for
$$n > 1$$
,

 $r^{kp^{n-1}} = (1+sp)^{n-1}$
 $= 1 + {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{k} + ... + (sp)^{n-1}$

But $p^{n-1} \mid {\binom{p^{n-1}}{k}}, \text{ for } 1 \le k \le p^{n-1}, \text{ and}$
 $p \mid (sp)^{k}, \text{ for } 1 \le k \le p^{n-1}.$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{2}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{1}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{1}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{1}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{1}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{1}} (sp)^{2} + ... + (sp)^{p^{n-1}}$
 $p \mid {\binom{p^{n-1}}{1}} > p + {\binom{p^{n-1}}{$

[1] and [2] = 7 K = p-1, so order of r mod p is p-1, so r is a prim. root of p.

- (c) A primitive root of p² is also a prim. root
 of pn for n ≥ 2.

 Pf: Let r be a primitive root of p².

 By (b), r is also a prim. root of p.

 Mote rp² = (mod p²) since p(p²) = p(p-1)
 and r is a prim. root of p².

 This a prim. root of p s.t. rp² = 1 (mod p²),
 and proof to Th. 8.9 shows this
 r is a prim. root of pn for n ≥ 1

 This r is certainly a prim. root for
 pn, n ≥ 2.
- 3. If r is a primitive root of p², p being an odd prime, show that the solutions of the congruence $X^{p-1} \equiv l \pmod{p^2}$ are precisely the integers r^p , r^{2p} , $r^{(p-1)p}$.
 - Pf: Note if x is a solution to $X^{p-1} \equiv 1 \pmod{p^2}$, Then it is a solution to $X^{p-1} \equiv 1 \pmod{p}$, since $G \equiv 6 \pmod{p^2} \implies G \equiv 6 \pmod{p}$.

Corollary to Th. 8.5 says X = 1 (modp) has exactly p-1 solutions. : xp1=1(modp2) has at most (p-1) solutions. Note That for K21, $(r^{kp})^{p-1} = (r^{p(p-1)})^k = (r^{(p^2)})^k = (r^{kp})^k = (r^{kp})^k$ as r is a prim. root of p^2 . The p-1 integers r, ..., r satisfy $x^{p-1} \equiv 1 \pmod{p^2}$ Note That $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$ incongruent solutions to $x^{p-1} = 1 \pmod{p^2}$ and so are a complete set of solutions. 4. (a) Prove that 3 is a primitive root of all integers of the form 7k and 2.7k

:. 3 (7) = 3 = 1 (mod 7), and so 3 is a primitive root of 7.

Figure of 3 mod 7^2 is (7-1) or 7(7-1)But $3^4 = 81 \equiv 32 \pmod{7^2}$ $\therefore 3^6 \equiv 9.32 \equiv 43 \pmod{7^2}$ $\therefore 3^6 \not\equiv 1 \pmod{7^2}$

· · order of 3 (mod ?2) is 7(7-1) = \$(72)

i - Lemma 2 (p. 170) 6 hows Phat For K≥2, 37 k-2 (7-1) \$ / (mod 7 k)

And Th. 8.9 shows 3 is a pr/m. root of 7k for $k \ge 1$.

Since 3 is an odd prim. root for 7k, Corollary (p. 171) shows 3 is a prim rost of 2-7K

[1.e., just need to show 3 a prim. root of p and 3^{p-1} \$1 (mod p²). Then 3 a prim. root of 7^k For 2.7^k, now just need 3 is odd 3.

```
(6) Find a primitive root for any integer of the form 17
       Just need to find a prim. root r of 17 s.t.

16 ≠ 1 (mod 172).
         Try 2: 2 = 16 = -1 (mod 17)

-: 28 = 1 (mod 17)
                     -- order of 2 mod 17 $ $(17)
         Try 3: 33 = 10 (mod 17)

34 = -4 (mod 17), 35 = -12 = 5, 3 = 15
                     3^{7} = -40 = -6, 3^{8} = -18 = -1, 3^{9} = -3, 3^{6} = -9

3'' = -27 = 7, 3^{12} = 21 = 4, 3^{13} = 12

3^{14} = 36 = 2, 3^{15} = 6
                      = 316 = 18 =1 (mod 17)
                    -- 3 a primitive root of 17
                  3^{4} = 8 | (mod | 12^{2}) | 3^{8} = 8 |^{2} = 656 | = 203

3^{16} = 203^{2} = 41209 = 171 \neq 1 \pmod{17^{2}}
                 -. 3 is a primitive root of 17k, kz1.
5. Obtain all the primitive roots of 41 and 82.
   Table on p. 166 states 6 is a prim. root of 41.
```

Proof of Th. 8.4 shows all other primitive roots are congruent to one of $6'_{1}$... $6''_{1}$ incongruent $6''_{1}$ $6''_{2}$ $6''_{1}$ $6''_{2}$ $6''_{3}$ $6''_{4}$

for 82, \$(82) = \$(2.41) = \$(41) -. 82 also has 16 prim. roots. -. if r is a prim. root of 41, Then r or r+41, which ever is odd, will also be a prim. root of 82.

For 41: $6^{12} = 6$, $6^{3} = 11$, $6^{7} = 25$, $6^{9} = 15$, $6^{12} = 28$, $6^{13} = 24$, $6^{17} = 26$, $6^{19} = 34$, $6^{21} = 35$, $6^{23} = 30$, $6^{27} = 12$, $6^{29} = 22$, $6^{31} = 13$, $6^{33} = 17$, $6^{37} = 15$, $6^{35} = 7$

-- 6, 7, 11, 12, 13, 15, 17, 19, 22, 24, 26, 28, 29, 30, 34, 35

-- For 82: 47, 7, 11, 53, 13, 15, 17, 19, 63, 65, 67, 69, 29, 71, 75,35 7,11, 13, 15, 17, 19, 29, 35, 47, 53, 63, 65, 67, 69, 71, 75 6.(a) Krove that a prim. root r of pk, pan odd prime, is a prim. root of 2 pk = r is an odd integer. (1) If r is odd, Then gcd $(r, 2p^k) = 1$. [13] Let n be order of r mod $2p^k$. i. n must divide, (by Th. 8.1), $\phi(2p^k)$ But \$ (2pk) = \$(2)\$ \$(pk) = \$(pk) by [1] and & multiplicative But $r^n \equiv 1 \pmod{2p^k} \Rightarrow r^n - 1 = a \cdot 2p^k$, some a_1 $\Rightarrow r^n = 1 \pmod{p^k}.$ But $r \neq prim root of p^k \Rightarrow \phi(p^k) \mid n$ by $\Re . 8.1.$ -. $n \mid \phi(p^k)$ and $\phi(p^k) \mid n \Rightarrow n = \phi(p^k)$. -- odd r prim. root of pk => va prim. root of 2, k (2) Let r be a prim. root of pk, podd, and suppose r is also a prim. root of 2pk.

Then clearly gcd (r, 2pk) = 1, and since 2 pk is even, Then r is odd.

(b) Confirm that 3, 3, 3, and 3, are prim-roots of 578 = 2-172, but that 34 and 317 are not.

By 4(6) 3 is a prim. root of 172 and so by 6(a), is a prim root of 2.172.

By Th. 8.3, 3 will also have order \$(172) if gcd (h, \$(172)) = 1

But \$ (172) = 172-17=17(16) = 24.17

Since for h = 1,3,59 gcd(h,24.17) =/, Man 3', 33, 35, 39 will also have order \$(172)

are all odd, so by 6(a), are also prim.

roots of 2-172.

For 3^{4} , $gcd(4, 2^{4}, 17) = 4$, so order of 3^{4} mod 17^{2} is $g(17^{2}) = 2^{2} \cdot 17 \neq g(17^{2})$

For 37, $gcd(17, 2^{4}.17) = 17$, so order of 3^{17} mod 17^{2} is $\frac{6(17^{2})}{17} = 2^{4} \neq \frac{6}{17^{2}}$

- -. 34 and 3 17 are not prim. roots of (?
- The note written in problem 2(a) shows that if r is a prim. root of 2pk, then it is a prim. root of pk.
- . 34 and 317 are not prim. roots of 2.172.
- 7. Assume r is a primitive root of the odd prime p and $(rttp)^{\beta+1} \neq l \pmod{p^2}$. Show rttp is a primitive root of p^k for each $k \geq l$.
 - Pf; Since $v = v + tp \pmod{p}$, Then v and v + tp have same order. \vdots v + tp is also a prim. root of p.
 - Since any prime root of phas order mod p² of (p-1) or p(p-1), Then r+tphas order mod p of (p-1) or p(p-1).
 - Since $(r+tp)^{p-1} \neq 1 \pmod{p^2}$, order of r+tp is not (p-1), and so must be $p(p-1) = p(p^2)$.
 - i. rtxp, a prim root of p, is also a

prim. root of p2, and The proof of Cemma 2 and Th. 8-9 show That r+tp is a prim. root of pk, K=1.

8. If n= 2 kg kipkz. pkr is the prime factorization of n>1,

define The universal exponent \(\lambda(n)\) of n by

 $\lambda(n) = /cm(\lambda(z^{k_0}), \phi(\rho_i^{k_i}), ..., \phi(\rho_r^{k_r}))$

where $\lambda(2)=1$, $\lambda(z^2)=2$, $\lambda(z^k)=z^{k-2}$ for $k \ge 3$. Prove The following statements concerning the universal exponent:

(a) For n = 2, 4, p^k , $2p^k$, where p is an odd prime, $f(n) = \phi(n)$

 $Pf: \Lambda(2) = 1$ by def., $\beta(2) = 2'-2'' = 1$ by 74.7.3 $\Lambda(4) = \Lambda(2^2) = 2$ by def., $\beta(2^2) = 2^2 = 2' = 2$

For n= Zpk, note (cm (1,x)=x.

 $\lambda(n) = lem(\lambda(2), \phi(\rho^{\kappa}))$ $= lem(\lambda(2), \phi(\rho^{\kappa})) = \phi(\rho^{\kappa}) = \phi(n)$

For
$$n = p^k$$
, $\lambda(h) = lcn(\beta(p^k)) = \phi(p^k) = \beta(h)$
(b) If $\gcd(a, z^k) = l$, then $a^{\lambda(z^k)} = l \pmod{z^k}$
If: By Euler's th., $a^{\beta(z^k)} = l \pmod{z^k}$
 $\phi(z^k) = z^k \cdot z^{k_l} = z^{k_{-l}}$
For $k = l$, $\phi(z^k) = l = \lambda(z^k)$
 $k = 2$, $\phi(z^k) = 2 = \lambda(z^k) = \lambda(z^k)$
 \therefore For $k = l$, z , $a^{\lambda(z^k)} = l \pmod{z^k}$
For $k \ge 3$, $\lambda(z^k) = z^{k-2}$
 $| length | le$

if
$$n = 2^{k_0} k! \cdots p_r$$
, Then by $(6) \neq (c)$,

$$\lambda(2^{k_0}) = [(mod 2^{k_0})]$$

$$\lim_{r \to a} [\lambda(2^{k_0}), d(p_i^{k_0}), \dots, d(p_r^{k_r})] = [(mod 2^{k_0})]$$
Since $\lambda(2^{k_0}) [lom [\lambda(2^{k_0}), d(p_i^{k_0}), \dots, d(p_r^{k_r})]$

$$\lim_{r \to a} [(mod 2^{k_0})] [(mod 2^{k_0})]$$

$$\lim_{r \to a} [(mod p_i^{k_0})]$$

$$\lim_{r \to a} [(mod p_i^{k_0})] = [(mod p_i^{k_0})]$$
Since $\lambda(p_i^{k_0}) = [(mod p_i^{k_0})]$

$$\lim_{r \to a} [(mod p_i^{k_0})] [2]$$

$$\lim_{r \to a} [(mod p_i^{k_0})] [2]$$

$$\lim_{r \to a} [(mod p_i^{k_0})] [2]$$

-. By [1] + [2], a (n) = ((mod n)

By def. in #8,
$$\lambda$$
 (5040) = $l cm(\lambda(2^4), \phi(3^2), \phi(5), \phi(7))$
= $l cm(2^2, 3^2, 4, 6)$

$$\phi(5040) = (2^{4}-2^{3}) \cdot (3^{2}-3)(4)(6)
 = (8)(6)(4)(6) = 1152$$

10. Use Problem 8 to show that if n \ \ 2,4, p^k, 2p^k, where p is an odd prime, Then n has no primitive root.

Pf: Let n = 2 p, ... pr be the prime factorization

Note from Th. 2-8, gcd (a, 6)-1cm (a6) = a6. -. lcm (a, 6) | a6 and lcm (a, 6) ≤ a6.

If $K_0 \neq 0$, Then since $n \neq 2, 4, or 2p^k$, Then $K_0 \geq 3, s_0 \quad \lambda(2^{k_0}) = 2^{k_0-2} < 2^{k_0-1} = \phi(2^{k_0})$ $-\frac{1}{2} \quad \lambda(2^{k_0}) = \frac{1}{2} \quad \phi(2^{k_0})$ $-\frac{1}{2} \quad \lambda(n) = (cm(\lambda(2^{k_0}), \phi(p^{k_1}), ..., \phi(p^{k_r}))$

=
$$/ cm(z^{k_0-2}, \phi(p^k), ..., \phi(p^k))$$

 $< / cm(z^{k_0-1}, \phi(p^k), ..., \phi(p^k)), by prob. #1,$
 $= / cm(\phi(z^{k_0}), \phi(p^k), ..., \phi(p^k))$
 $= / cm(\phi(z^{k_0}), \phi(p^k), ..., \phi(p^k))$
 $= / cm(\phi(z^{k_0}), \phi(p^k), ..., \phi(p^k))$
 $= / cm(\phi(z^{k_0-1}), oder for (p^k))$
 $= / cm(\phi(p^k)), oder for (p^k))$
 $= / cm(\phi(p^k)), oder for (p^k))$
 $= / cm(\phi(p^k)), oder for (p^k)) = gcd(z^{s_1}, ..., z^{s_r})$
 $= / cm(\phi(p^k)), ..., \phi(p^k)) = gcd(\phi(p^k)), ..., \phi(p^k))$
 $= / cm(\phi(p^k)), ..., \phi(p^k)) = gcd(\phi(p^k)), ..., \phi(p^k))$

 $\geq 2 \left(cm \left(\phi(\rho^{k_i}), \dots, \phi(\rho^{k_r}) \right) \right)$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha(\alpha, \beta) \cdot l\alpha(\alpha, \beta)) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha(\alpha, \beta) \cdot l\alpha(\alpha, \beta)) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha(\alpha, \beta) \cdot l\alpha(\alpha, \beta)) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha(\alpha, \beta) \cdot l\alpha(\alpha, \beta)) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha(\alpha, \beta) \cdot l\alpha(\alpha, \beta)) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha(\alpha, \beta) \cdot l\alpha(\alpha, \beta)) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha(\alpha, \beta) \cdot l\alpha(\alpha, \beta)) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha(\alpha, \beta) \cdot l\alpha(\alpha, \beta)) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha(\alpha, \beta) \cdot l\alpha(\alpha, \beta)) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha(\alpha, \beta) \cdot l\alpha(\alpha, \beta)) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha(\alpha, \beta) \cdot l\alpha(\alpha, \beta)) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g(\alpha, \beta) = \alpha \, \delta, \text{ then }$$

$$\frac{1}{2} \int \ln \alpha \, g$$

.:
$$\lambda(n) < \beta(n)$$
 for $k_0 = 0$, and from 8.(c), $a^{\lambda(n)} \equiv 1 \pmod{n}$.

-i. for
$$n \neq 2, 4, p^{k}, 2p^{k}, \lambda(n) < \phi(n)$$
, and $a^{\lambda(n)} = 1 \pmod{n}$.

-. n has no primitive root.

11. (a) Prove That if
$$gcd(a, n) = 1$$
, Then The linear congruence $ax = 6 \pmod{n}$ has the solution $x = 6 a^{\lambda(n)-1} \pmod{n}$.

$$Pf: B_{\gamma} 8.(c), a^{\lambda(n)} \equiv 1 \pmod{n}, 50$$

$$\int a^{\lambda(n)} = \int \pmod{n}$$

77=7-11, so 2(n)=/cm(\$(7),\$(11))

$$3^{4} = 4$$
, $3^{8} = 16$, $3^{(2)} = 64$, $3^{24} = 4096 = 15$
 $3^{27} = 60$, $3^{27} = 180 = 26$, $13 \cdot 3^{29} = 13 \cdot 26$
 $= 338 = 30$