Chapter 12 - Static Equilibrium and Elasticity

1. Since in equilibrium, force upward on bat by player must equal in magnitude the force of gravity. \[F = 80 \text{ N upward} \]

 Total torque must also be 0. Torque of gravity is \((10 \text{ N})(0.6 \text{ m}) = 6.0 \text{ N-m (clockwise)} \).

 \[\therefore \text{Torque by player on bat} = 6.0 \text{ N-m counterclockwise} \]

9. Break up to track into small subsections of length \(\Delta x \).

 Assume uniform density. This will cancel in the equation:

 \[m \Delta V_1 + m \Delta V_2 + \ldots + m \Delta V_n = m \Delta V_1 + m \Delta V_2 + \ldots + m \Delta V_n \]

 Where \(\Delta V_i \) = the volume of a subsection.

 \[\Delta V_i = (\Delta x_i)(0.05) f(p_i), \text{where } p_i \text{ is a point in the interval of } \Delta x_i, \text{ and } f(x) = \frac{(x-3)^2}{9} \]

 \[\lim_{\Delta x_i \to 0} \sum_{i=1}^{n} (\Delta x_i)(0.05) f(p_i) = \text{volume of } \]

 \[\text{track} = \int_0^3 \left(\frac{(x-3)^2}{9} \right) \, dx = \left(\frac{0.05}{27} \right) \left(x^3-3x^2 \right) \bigg|_0^3 = \]

 \[0 - \left(\frac{0.05}{27} \right)(-27) = 0.05 \text{ m}^3 \]
For the numerator, \[\int_0^3 \frac{(0.05) (x-3)^2}{9} \, dx = \]
\[0.05 \int_0^3 \frac{x^3 - 6x^2 + 9x}{9} \, dx = \]
\[0.05 \left(\frac{x^4}{4} - 2x^3 + \frac{9}{2} x^2 \right) \bigg|_0^3 = \]
\[0.05 \left(\frac{81}{4} - 54 + \frac{81}{2} \right) = \frac{0.05 \left(6.75\right)}{9} = 0.0375 \]

\[\therefore \text{C.G.} = \frac{0.0375}{0.05} = 0.75 \text{ m} \]

15. (a) Let \(f_x = \text{friction force, } f_n = \text{normal force at point of contact.} \)

Let \(\mathbf{N} = \text{force of nail on hammer} \)

(By Newton's 3rd law \(\mathbf{a} = -\text{force hammer on nail} \))

\[\therefore \mathbf{N}_x = 150 + f_x, \quad \mathbf{N}_y = f_n \]

From torques,
\[(150 \text{ N})(30.0 \text{ cm}) = (f_y)(5.00 \text{ cm}) \]

\[\therefore f_y = 900 \text{ N} \]
\[N \cos 30^\circ = N_y \]

\[N = \frac{900}{\cos 30^\circ} = 1.04 \times 10^3 \text{ N} \]

Directed 60° from horizon (counterclockwise)

(6) \[N_x = N \sin 30^\circ = 520 \text{ N} \]
\[\therefore f_x = 520 \times \sin 30^\circ = 320 \text{ N} \]

\[\therefore \text{ from } f_x \text{ and } f_y \]
\[\text{force} = (320 \text{ N})\hat{i} + (900 \text{ N})\hat{j} \]